Участник @ilya-antipin написал в Выбор оптимальной схемы:
PMID: 11328813. Вот это почитать можно.
Спасибо. Почитал, интересно. Исходя из данного исследования, увидел, что включение 3ТС даже в виде неестественного для клетки L-энантиомера в митохондриальную ДНК при репликации сильно-сильно теоретически возможно, хоть и практически маловероятно.
@ilya-antipin
трифосфатные формы и гамма-полимераза мтДНК человека ключевые слова тут, точнее 5’-3’-экзонуклеаза.
Я бы даже сказал, ключевая фигура – гамма-полимераза с функциями 3’-5’-экзонуклеазы.
Распишу для коллектива наиболее интересные моменты, на мой взгляд, из исследования с небольшими комментариями.
Вводные вспомогательные данные для усвоения результатов исследования:
- В митохондриях постоянно происходит репликация ДНК.
- Репликация ДНК – удвоение двухцепочечной молекулы ДНК.
- В митохондриальных кольцевых ДНК репликация осуществляется гамма-полимеразой.
- Удвоение цепи происходит за счет присоединения нуклеотидтрифосфатов по принципу комплементарности (А с Т, С с G).
- Нуклеотидтрифосфаты (НТФ) представляют собой в случае ДНК дезоксирибозу+азотистое основание (А, С, Т, G) = нуклеозид + три остатка фосфорной кислоты. (на 3’-конце дезоксирибозы находится гидроксильная группа (ОН), на 5’-конце дезоксирибозы находятся три фосфата соединенные в линию с помощью 2-х фосфодиэфирных связей)
- Рост 2-ой цепи ДНК всегда идет путем присоединения свободного НТФ из клетки первым фосфатом на 5’-конце дезоксирибозы нуклеотида к ОН-группе 3’-конца дезоксирибозы последнего в растущей цепи нуклеотида, уже соединенного с материнской цепью ДНК по принципу комплементарности с удалением 2-х крайних фосфатов и образованием нуклеотидмонофосфата (НМФ) и процесс идет так далее. Т.е. присоединение нуклеотидов в растущей цепи ДНК всегда идет от 5’-конца к 3’-концу. Осуществляется все это, благодаря ферментам полимеразам.
- Забор из клетки идет строго НТФов (не НМФов и не НДФов) с образованием в составе ДНК НМФов.
- Образование НТФов происходит из нуклеозидов (азотистое основание + дезоксирибоза с ОН-группой на 5’-конце дезоксирибозы вместо фосфатов) путем фосфорилирования в три стадии (добавление 3-х фосфатов на 5’-конец вместо ОН-группы).
- Ламивудин представляет собой нуклеозидный аналог клеточного цитидина, но на 3’-конце ОН-группа отсутствует и, более того, вместо самого 3’-углерода находится сера. Т.е. после попадания ламивудина в клетку сначала происходит фосфорилирование 3ТС и превращение его в трифосфатную форму, затем встраивание его в растущую цепь ДНК, а затем присоединение к ламивудину следующего нуклеотида становится невозможным ввиду отсутствия на 3’-конце ОН-группы. Т.е. образуется тупиковый/терминальный комплекс и синтез цепи прерывается.
- Зальцитабин также представляет собой нуклеозидный аналог клеточного цитидина практически идентичный ламивудину, но в 3’-позиции дезоксирибозы располагается углерод, также как и в естественном цитидине, но без ОН-группы, присоединенной к 3’-углероду.
- 3’-5’-экзонуклеаза представляет собой фермент, который способен исправлять ошибки при репликации ДНК, представляющие собой включение (инкорпорацию) некомплементарных материнской цепи нуклеотидов параллельной строящейся цепи. В том числе, экзонуклеаза, по видимому, способна удалять и тупиковые нуклеотиды. Данная экзонуклеаза движется в направлении от 3’-конца к 5’-концу.
- Гамма-полимераза представляет собой фермент в митохондриях, обладающий, как полимеразной активностью, так и активностью 3’-5’-экзонуклеазы. Т.е. сама способна исправлять свои ошибки.
Теперь перейдем непосредственно к исследованию:
- Ученые решили проверить насколько сильно ингибируют синтез митохондриальной ДНК трифосфатные формы следующих НИОТ, являющихся аналогами естественного нуклеозида клетки цитидина: L-энантиомера 3TC (ламивудин), D-энантиомера 3ТС, Зальцитабина. И сравнили их с естественным нулеотидом клетки цитидином.
- Сравнивали ученые 2-е характеристики гамма-полимеразы:
А) собственно полимеразную активность (т.е. эффективность включения/инкорпорации вышеописанных нуклеотидов в растущую цепь ДНК);
Б) 3’-5’-экзонуклеазную активность (т.е. эффективность исключения/удаления исследуемых
трифосфатов аналогов нуклеозидов и естественных нуклеотидов ЦТФ и ТТФ).
- Для оценки эффективности полимеразной активности (инкорпорации) нуклеотидов ученые использовали 2-е характеристики и их комбинацию:
А) константу полимеризации Kpol миниДНК-димера (специальный небольшой участок ДНК, на одной цепи (из 2-х) которой последний нуклеотид готов принять на свой 3’-конец меченый исследуемый нуклеотид, комплементарный гуанину на соседней цепи димера) и исследуемых нуклеотидов (т.е. иными словами меру, характеризующую скорость образования комплекса исследуемого нуклеотида с миниДНК-димером, чем она выше, тем выше скорость полимеризации);
Б) константу диссоциации Kd миниДНК-димера и исследуемого нуклеотида (т.е. иными словами мера, характеризующая прочность комплекса миниДНК-димера и исследуемого нуклеотида, чем она больше, тем меньше прочность комплекса и тем легче он распадается);
В) комбинация двух констант, равная отношению константы полимеризации к константе диссоциации = Kpol/Kd (т.е. мера, характеризующая эффективность связывания комплекса миниДНК-димер - исследуемый нуклеотид, чем выше эта константа, тем выше эффективность связывания комплекса, т.е.).
- Для оценки эффективности удаления нуклеотидов из комплекса миниДНК-димер и исследуемого нуклеотида, использовали константу экзонуклеазной активности Kexo (мера, характеризующая скорость удаления нуклеотидов из комплекса).
Результаты:
• Kpol у трифосфата ламивудина получилась в 352 раза меньше, чем у естественного цитидинтрифосфата и в 5-6 раз меньше, чем у трифосфата Зальцитабина;
• Kd у трифосфата ламивудина получилась в 9 раз больше, чем у цитидинтрифосфата и в 224 раза больше!, чем у трифосфата Зальцитабина, здесь обратим внимание, что комплекс Зальцитабин-ДНК почти в 30 раз прочнее, чем даже естественный для клетки комплекс цитидин-ДНК;
• Kpol/Kd у трифосфата ламивудина получилась приблизительно в 3000 раз меньше, чем у естественного цитидинтрифосфата и в 1100 - 1200 раз меньше, чем у трифосфата Зальцитабина;
• Таким образом получилось, что ламивудин более, чем в 1000 раз хуже встраивается в ДНК митохондрий по сравнению с зальцитабином и почти в 3000 раз хуже по сравнению с цитидинтрифосфатом (ЦТФ), а вот зальцитабин всего в 2,5 раза менее охотно встраивается в мтДНК по сравнению с натуральным клеточным ЦТФом.
• Kexo у трифосфата ламивудина получилась в 2-4 раза меньше, чем у естественных и комплементарных в нашем эксперименте материнской цепи цитидинтрифосфата и тимидинтрифосфата (которые в свою очередь и так малы и составляют приблизительно 1% ошибочного исключения правильных комплементарных нуклеотидов), но в 1000 раз! больше, чем у трифосфата Зальцитабина (т.е. получилось, что если уж в мтДНК встроится ламивудин, то он удалится оттуда очень медленно (но все же удалится) и задержит таким образом репликацию мтДНК, однако за счет почти в 3000 раз более неохотной инкорпорации в ДНК по сравнению с натуральными нуклеотидами (т.е. его шанс в мтДНК встроиться абсолютно низкий) токсичность его практически отсутствует, а вот в случае с Зальцитабином все гораздо хуже – он и инкорпорироваться в мтДНК весьма может (всего в 2,5 раза меньше шансов и желания по сравнению с натуральными нуклеотидами), а вот удалиться оттуда его практически не заставить (в 2000 – 4000 раз неохотней удалится по сравнению даже с ошибочно удаляемыми комплементарными естественными нуклеотидами)., т.е. жутко токсичен.
Вывод по ламивудину и мт токсичности:
@ilya-antipin
Но, да, потенциал митохондриальной токсичности очень низкий, т.е. не клинический и даже не субклинический, но не нулевой.
А вот это:
@ilya-antipin
Возможно, например, это цепочка вроде истощения GSH → окислительный стресс → рост MDA, что можно уже пощупать (малоновый диальдегид, а не то, что кто-то мог подумать), но нужно дофига или же какие-то дефекты в каскадах.
извините Илья Игоревич, к сожалению, скорее всего, не осилю ввиду отсутствия мед.образования).