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Branched-chain amino acids (BCAA) are one of the most popular sports supplements, marketed under the premise that they
enhance muscular adaptations. Despite their prevalent consumption among athletes and the general public, the efficacy of BCAA
has been an ongoing source of controversy in the sports nutrition field. Early support for BCAA supplementation was derived
from extrapolation of mechanistic data on their role in muscle protein metabolism. Of the three BCAA, leucine has received the
most attention because of its ability to stimulate the initial acute anabolic response. However, a substantial body of both acute and
longitudinal research has now accumulated on the topic, affording the ability to scrutinize the effects of BCAA and leucine from
a practical standpoint. This article aims to critically review the current literature and draw evidence-based conclusions about
the putative benefits of BCAA or leucine supplementation on muscle strength and hypertrophy as well as illuminate gaps in the
literature that warrant future study.
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Of the 20 amino acids recognized to compose the building
blocks of human protein, only three possess a branched side chain:
leucine, isoleucine, and valine. Numerous supplements are sold
consisting of these three amino acids, collectively known as the
branched-chain amino acids (BCAA), with claims that they en-
hance muscular adaptations. The validity of these claims has been
an ongoing source of controversy in the sports nutrition field
despite the immense popularity of BCAA among athletes and the
general public.

Branched-chain amino acids have many important physiolog-
ical roles and characteristics. The BCAA comprise three of nine
amino acids that are considered to be essential amino acids (EAA)
given that they cannot be synthesized endogenously and, thus, must
be acquired via diet to sustain human health (Wu et al., 2013). The
BCAA contain an aliphatic side chain with a branch that carries a
carbon atom attached to three or more carbon atoms. The BCAA
are among the most hydrophobic of amino acids, allowing them
to be particularly effective in maintaining the stability of folded
proteins and carrying out functions for globular proteins (Brosnan
& Brosnan, 2006). Due to their amphipathic helices, BCAA also
specifically interact with both lipid acyl chains and head groups
(Brosnan & Brosnan, 2006).

The unique properties of BCAA make them of integral
importance for skeletal muscle metabolism. Thus, BCAA have

long been viewed as potential candidates for supplementation.
The BCAA facilitate the ability of muscle fibers to absorb blood
sugar and modulate insulin signaling (Yoon, 2016). Most notably,
BCAA are important regulators of muscle protein metabolism
where they function in many capacities and are unique in that
they largely bypass first-pass metabolism in the liver (Brosnan &
Brosnan, 2006). Of the three BCAA, leucine is most notably a key
regulator of muscle protein synthesis (MPS), exerting modulating
effects even in the presence of hyperaminoacidemia (Rieu et al.,
2006).

Much of the early data on BCAA supplementation came from
rodent studies. These studies suggested that BCAA in rats may be
rate limiting for MPS, and thus, supplementation could have a
hypertrophic benefit (Buse, 1981; Garlick & Grant, 1988). How-
ever, such findings have questionable generalizability to humans.
In particular, rats possess a much smaller percentage of skeletal
muscle mass compared with humans. Moreover, processes in-
volved with regulating MPS differ from that in humans at both
the initiation and translation stages (Wolfe, 2017). For these
reasons, this review will focus on human data.

Branched-chain amino acids, and leucine in particular, play an
integral role in muscle protein metabolism (Matthews, 2005).
However, the context in which supplementation occurs must be
taken into account when evaluating the efficacy of BCAA and/or
leucine supplementation for muscle hypertrophy and strength.
There are many important factors that may influence findings on
this topic, including diet (total macronutrient and energy intake),
the presence or lack of a resistance training (RT) component,
timing of ingestion, whether other amino acids were consumed,
population demographics, measurement protocols, and other con-
siderations. These factors and their lack of standardization between
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studies make it difficult to form strong conclusions about BCAA
supplementation. That said, scrutiny of the available data allows
us to draw important inferences from a practical standpoint. The
purpose of this article will be to review the current literature and
draw evidence-based conclusions about the putative benefits of
BCAA supplementation on muscle strength and hypertrophy as
well as to point out gaps in the literature that warrant future study.

BCAA and Net Muscle Protein Balance

A net positive addition of muscle proteins involves an increase in
MPS and/or suppression of muscle protein breakdown (MPB;
Glynn et al., 2010). Accretion of muscle proteins results from
periods of positive net muscle protein balance (MPS >MPB) that
exceed negative balance. However, the available evidence indi-
cates that MPS is the main modulator of net muscle protein balance
and, thus, protein accretion (Tipton et al., 2018). Biolo et al. (1997)
observed that an amino acid infusion increased MPS, leading to
positive net muscle protein balance with little change inMPB either
at rest or after exercise. Muscle hypertrophy results from increased
myofibrillar proteins (e.g., actin, myosin, troponin, etc.), in partic-
ular, and synthesis rates of these proteins are increased by resis-
tance exercise and protein ingestion (Joanisse et al., 2020).
Currently, the effect of nutrition and exercise on the breakdown
of any individual muscle protein remains undetermined. It is also
likely that some degree of increased MPB following exercise is an
important factor in the synthesis of new proteins, although the
specifics of this hypothesis remain undetermined. Given the greater
relative importance of MPS and measurement difficulties with
MPB, the focus of this section will be mainly on MPS and related
anabolic signaling.

Protein synthesis is regulated by a network of intracellular
signaling cascades that modulate mRNA translation at initiation and
elongation. The major player in this regulatory network is mecha-
nistic target of rapamycin (mTOR), or more specifically, mTOR
Complex 1, the primary regulator of protein synthesis (Caron et al.,
2010; Laplante & Sabatini, 2012). Energy and protein intake are the
main nutritional effectors of mTOR Complex 1, which acts as a
“nutrient sensor” and, thus, is permissive for MPS. In particular,
the BCAA, largely modulated by leucine, activate signaling path-
ways that converge at mTOR Complex 1 (Blomstrand et al., 2006).
Activated mTOR phosphorylates ribosomal protein s6 kinase 1 and
eukaryotic initiation factor 4E-Binding protein-1, each of which
uniquely allows for ribosomal binding (Showkat et al., 2014).

Although it is clear the BCAA, and leucine in particular,
stimulate mTOR and MPS (Kimball & Jefferson, 2006), evidence
indicates that beyond a certain threshold of leucine and total protein
intake, there is no further benefit to the MPS response (Breen &
Phillips, 2012; Witard et al., 2014). Leucine is of particular interest
here as the “leucine trigger” hypothesis asserts that MPS will be
maximized at a threshold value below which maximal stimulation
fails to occur (Breen & Phillips, 2012). The value most commonly
referenced as the “threshold” for leucine is 2–3 g (Witard et al.,
2016); however, further work is need to better elucidate how
leucine needs differ depending on context. Most notably, threshold
values in older adults are yet to be clearly established. The anabolic
effects of total protein also are context dependent, but the optimal
dose of high-quality protein for stimulating muscle protein accre-
tion is likely between 20 and 40 g (Macnaughton et al., 2016) and
would be dependent on factors such as training status, RT program,
energy status, bodyweight, and potentially level of muscularity
(Schoenfeld & Aragon, 2018). Thus, although it seems clear that

BCAA are important, there is a threshold at which their effects
become redundant. What that point is, and how best to reach it, has
been investigated in different contexts with different nutrient and
amino acid formulations.

Resistance training participation is an important consideration
when assessing the potential efficacy of BCAA in optimizing the
MPS response. A bout of resistance exercise has a well-documented
role as a potent stimulator of the mTOR andMPS (Burd et al., 2010).
Investigations have found that to maximize the MPS response, those
engaging in resistance exercise have a higher need for EAA than
those who do not. Churchward-Venne et al. (2012) compared the
MPS responses during rest versus postresistance exercise by pro-
viding groupswith either a 25 g dose ofwhey protein or a suboptimal
dose of whey (6.25 g) matched for leucine content. Researchers
found no significant between-group differences in the initial 1.5 hr
period following the exercise bout; however, a significant difference
in the MPS response favoring the 25 g dose of whey was noted at
3–4 hr postexercise. This finding suggests that sufficient EAA
quantity as provided by the 25 g of whey protein is important for
maximizing theMPS response when there is a higher need for amino
acid building blocks, such as during the post-RT period.

Whereas the addition of BCAA to inadequate intact, isolated
protein intake does not seem to elicit an MPS response equivalent
to adequate postexercise protein intake, there may be situations in
which MPS may be stimulated with a combination of inadequate
protein and BCAA. Tipton et al. (2009) found that untrained
participants who consumed 16.6 g of whey protein with 3.4 g
of leucine had the same net protein balance as those who ingested
20 g of whey protein alone following a bout of resistance exercise.
Similarly, Atherton et al. (2017) observed that in older and young
adults ingesting a supplement that contained free leucine, 10 g
protein, and 24 g carbohydrate, the response of MPS was enhanced
following resistance exercise compared with 10 g of protein alone.
Moreover, Churchward-Venne et al. (2012) demonstrated that
ingestion of additional leucine with a suboptimal isolated protein
source does not “rescue” the anabolic response to that of an ad-
equate amount of protein. However, supplementation of leucine to
an inadequate dose of whey protein in combination with carbohy-
drate coingestion was effective to stimulate MPS to the level of
sufficient (25 g) protein (Churchward-Venne et al., 2014). The food
matrix also seems to influence the anabolic response to protein and
BCAA ingestion (Burd et al., 2019). Collectively, these studies
suggest that MPS is maximized with adequate consumption of
high-quality protein. However, in situations where there is not a
whole protein source or sufficient EAA availability, a higher dose
of leucine or the presence of other nutrients can “rescue” the MPS
response.

Due to the effects of age-related anabolic resistance, higher
doses of leucine are required in older adults to maximize the MPS
response (Breen & Phillips, 2011). Although the exact etiology of
anabolic resistance is yet to be fully elucidated, it is likely resultant
to a convergence of many factors at the level of the muscle,
nervous, and other interacting systems (Breen & Phillips, 2011;
Wilkinson et al., 2018). Factors such as a reduction of motoneur-
ons, anabolic hormones, blood flow, and higher chronic inflamma-
tion all likely contribute to a reduced sensitivity to anabolic stimuli.
Although some functional decline is inevitable, the evidence does
converge on an almost complete attenuation of anabolic resistance
in older individuals who have maintained physical function, par-
take in RT, and consume higher doses of protein/leucine (Breen &
Phillips, 2011). Katsanos et al. (2006) observed that 1.7 g of leucine
given to older adults within an EAA mixture was inadequate to
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match theMPS response in younger adults; however, 2.8 g of leucine
proved sufficient for this purpose. Thus, older adults can maximize
MPS by ingesting extra leucine to equal ∼3 g or ingesting doses
of high-quality protein (∼30–35 g) that reach leucine thresholds
(Koopman et al., 2009; Pennings et al., 2012; Symons et al., 2009).

Although we know that adequate leucine augments the ana-
bolic response acutely in older individuals, it may also sensitize
the anabolic response on a more chronic basis. To investigate this,
Casperson et al. (2012) measured the anabolic response to the same
meal before and after 2 weeks of leucine supplementation. The
results showed that supplementing 4 g of leucine on a chronic basis
produced higher rates of MPS with ingestion of the same meal that
was administered preintervention. These results suggest that older
individuals might be able to achieve an “anabolic sensitization”
effect over time with higher levels of leucine intake.

What emerges when assessing the available evidence is that a
hierarchy exists to the requisite amino acid building blocks that
would ensure the most robust anabolic response. Whole intact
proteins > EAA >BCAA > leucine alone represents the hierarchy
of anabolic stimulation provided that sufficient leucine is present in
each condition (Moberg et al., 2016). Leucine alone may stimulate
the translational pathways, but without sufficient EAA building
blocks to sustain MPS, the response is limited (Churchward-Venne
et al., 2012). Although BCAA contain two additional building
blocks that have their own unique contribution to the MPS re-
sponse, other EAA are still limited (Jackman et al., 2017). More-
over, isoleucine and valine may compete with leucine for transport
into themuscle cell, thus further limiting the effectiveness of BCAA
alone (Churchward-Venne et al., 2014). High-quality intact proteins
provide the full complement of EAA and, if contained in a food
matrix, will be ingested with other constituents that could poten-
tially enhance hypertrophic adaptations (Burd et al., 2019; Mobley,
Mumford, et al., 2017; van Vliet et al., 2017). We have likely only
scratched the surface in identifying components in whole food
sources that have the potential to induce an anabolic response. Some
examples include dairy exosomes seen in whey protein (Mobley,
Mumford, et al., 2017), fat contained in whole milk (Elliot et al.,
2006), and undetermined properties in whole eggs (Bagheri et al.,
2020; van Vliet et al., 2017). It is also noteworthy that most studies
employ a dose of approximately 20–25 g of protein as the treatment
because this dose is thought to maximally stimulate MPS and
ensure that leucine is at or above threshold values (Churchward-
Venne et al., 2012). In contrast, Macnaughton et al. (2016) com-
pared 20 g versus 40 g whey protein ingested after a high-volume
session totaling 20 sets of full-body training and found that a 40 g
dose elicited a ∼20% greater MPS response. Thus, it remains
possible that consumption of more protein and sufficient EAA is
of greater consequence when intensive resistance exercise involves
a large amount of muscle mass. Recently, Park et al. (2020) reported
that a 70 g dose of protein elicited a greaterMPS response than 35 g.
This breach of previously assumed limits of protein dosing to
maximize the acute anabolic response might be explained by the
use of older subjects and a slowly digested protein source (beef
patties) within a mixed-macronutrient meal. Whereas it is clear that
sufficient EAA is requisite for maximizing MPS, the amount that is
sufficient changes with context.

BCAA and Muscle Hypertrophy

Although acute data offer important mechanistic insights, scrutiny
of longitudinal research is needed to fully elucidate the effects of
BCAA supplementation on hypertrophic adaptations (see Table 1).

In this regard, findings largely show that young and middle-aged
individuals consuming adequate protein receive no additional
benefit from BCAA supplementation. Spillane et al. (2012) ob-
served no significant changes in lean-body mass in participants
who ingested 9 g/day of BCAA compared with placebo. Evidence
with larger leucine doses also showed no added benefit when
adequate protein (≥1.6 g·kg−1·day−1) was consumed (Aguiar et al.,
2017; DE Andrade et al., 2020). Mobley, Mumford, et al. (2017)
reported no hypertrophic differences between supplementation
with placebo, 3 g of leucine alone, or 25 g of whey protein
(standardized for leucine content) during 12 weeks of RT. All
participants in the study reported ingesting ∼1.8 g·kg−1·day−1 of
protein, after which supplementation conferred no additional ben-
efits to muscle protein accretion. Interestingly, the group that
consumed whey protein alone had a higher satellite cell number,
suggesting an increased potential for long-term/subsequent growth.
Similarly, DE Andrade et al. (2020) showed that supplementation
with 10 g/day leucine did not enhance gains in muscle mass or
strength when compared with an isonitrogenous control during
12 weeks of RT. Overall, the evidence appears clear that in the
presence of adequate daily protein provision, there is no further
benefit to additional leucine or BCAA supplementation on mea-
sures of muscle hypertrophy.

Although it seems clear that BCAA supplementation has little or
no efficacy for enhancing gains in muscle mass during RT with
sufficient energy and protein intake, there is some evidence that
muscle loss may be minimized by BCAA during energy restriction.
Dudgeon et al. (2016) reported that trained, college-aged males
better maintained lean bodymass with RT in a hypocaloric condition
while being supplemented with BCAA. However, Dieter et al.
(2016) noted that this study had significant issues, including the
inappropriate use of statistical testing that may have unduly biased
results. Unsupervised training sessions, lack of supervised supple-
ment administration, lack of any diet reporting ormonitoring, a small
sample size, and other issues further call into question the validity of
these findings. In particular, the BCAA group did not lose fat mass
during the intervention, suggesting a lack of adherence to the low
energy diet. Future work should investigate the potential efficacy of
BCAA in hypocaloric conditions as this area remains understudied.
Moreover, it is clear that increased protein intake leads to mainte-
nance of muscle during RT with energy restriction (Mettler et al.,
2010). Thus, it is questionable whether BCAA supplementation
would further enhance the response of muscle during energy
restriction. Since direct and kinetic evidence supports the general
superiority of intact, high-quality protein over BCAA alone in other
contexts, a logical rationale is lacking for ingestion of BCAA over a
more complete protein source regardless of energy status.

There is evidence of the potential hypertrophic benefits of
BCAA, leucine in particular, in older individuals. However, it
must be interpreted from the lens of a lack of standardization and
generally low protein intakes in the studies available. A meta-
analysis by Komar et al. (2015) aimed to synthesize the literature
relating to leucine supplementation and its effects on anthropo-
metric parameters such as lean body mass (LBM), body mass
index, and body weight in older individuals and those prone to
sarcopenia. Supplementation increased body weight, LBM, and
body mass index. The authors concluded that supplementation of
various protein products containing at least 2 g/day of leucine
independent of training exerted beneficial effects on body compo-
sition measures in those prone to sarcopenia. However, only one
study meeting inclusion criteria matched participants for protein
intake ∼0.99 g/kg (Verhoeven et al., 2009). The intervention arm in
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this study was supplemented with 7.5 g/day of leucine; no hyper-
trophic benefits were observed above placebo. Less heterogenous
data and more standardization would greatly strengthen conclu-
sions on this topic.

Additional evidence is particularly needed in older individuals
consuming leucine or BCAA in conjunction with an RT program.
Komar et al. (2015) contained an RT arm and observed greater
improvements in lean mass in women with sarcopenia who
received an EAA supplement (Kim et al., 2012). As participants
were provided with a full complement of EAA, this precludes the
ability to draw conclusions about BCAA alone. Recently, Bagheri
et al. (2020) investigated the utility of BCAA in conjunction with
an RT program in postmenopausal women. The authors reported
that although the intervention increased strength and hypertrophy,
no differences were observed in the BCAA arm compared with
placebo. These findings suggest that BCAA supplementation lacks
efficacy even in older adults. Previous mechanistic underpinnings
and practical considerations would suggest that a higher leucine
threshold combined with a lower propensity for adequate calorie
intake (Giezenaar et al., 2016) may enhance the efficacy of
supplementation in this population. In particular, supplemental
provisions that raise per meal leucine may be warranted to enhance
hypertrophy in cases where it is not possible to consume sufficient
per meal protein. However, even in the case of leucine, more
randomized controlled trials are needed in older individuals with
supplementation in conjunction with an RT intervention to make
strong recommendations on potential benefits in different contexts.

Effects on Strength Performance

Consistent with evidence that BCAA supplementation lacks effi-
cacy for promoting muscle hypertrophy, research generally fails to
support a longitudinal benefit for improving strength-based per-
formance as well (see Table 1). Spillane et al. (2012) found that
participants who engaged in heavy RT 4 days/week × 8 weeks
exhibited similar improvements in upper and lower body strength
and endurance performance when ingesting BCAA compared with
a control group. The addition of leucine to diets of adequate pro-
tein also confers no benefits to strength (Aguiar et al., 2017; DE
Andrade et al., 2020). Although Dudgeon et al. (2016) concluded
that supplementing a hypocaloric diet with BCAA helped to
preserve dynamic muscular strength, the aforementioned statistical
issues and study design flaws call into question the validity of these
findings. Therefore, there is no clear benefit on strength perfor-
mance with longitudinal BCAA supplementation.

Previous reviews investigating BCAA supplementation have
suggested a potential benefit tomuscle recovery. Ameta-analysis by
Rahimi et al. (2017) pooled data from eight studies that investigated
the effects of BCAA on exercise-induced muscle damage in
recovery from exercise. The analysis found that BCAA significantly
reduced creatine kinase (CK) at both <24 hr and at 24 hr postexer-
cise compared with placebo, but those effects were not significant at
any follow-up times for muscle soreness and lactate dehydrogenase.
In addition, a 2017 systematic review by Fouré and Bendahan
(2017) concluded that BCAA may be efficacious on outcomes of
exercise-induced muscle damage provided that muscle damage was
low to moderate and that BCAA supplementation intake was higher
than 200 mg·kg−1·day−1 for an extended time period (>10 days).

Although data generally do seem to support the potential for
attenuating markers of muscle damage with BCAA supplementa-
tion, it is unclear whether there is a meaningful relationship to acute
performance outcomes. VanDusseldorp et al. (2018) investigated

the effects of BCAA supplementation on the time course of
recovery following eccentric exercise with assessed markers in-
cluding CK, soreness, maximal voluntary isometric contraction,
jump squat, and perceived soreness. There were no significant
group by time interaction effects observed for CK, soreness,
maximal voluntary isometric contraction, vertical jump, or jump
squat. The CK concentrations increased in both groups following
the 4, 24, 48, and 72 hr marks, but CK was lower in the BCAA
group compared with placebo, and individuals supplementing with
BCAA reported less soreness at the 48 and 72 hr time points.
However, although BCAA had a positive effect on maximal
voluntary isometric contraction, it did not improve jump squat
performance. Given the findings, the authors noted that this find-
ing holds questionable applicability to the majority of individuals
who engage in dynamic movements and also questioned whether
effects would hold true if individuals consumed a diet consisting
of adequate protein. Waldron et al. (2017) similarly observed a
preservation in isometric strength as well as a small benefit to
preserving countermovement jump performance compared with
placebo. Alternatively, Smith et al. (2018) found no improvements
in upper body muscular strength involving bench press and rowing
exercises among participants supplementing with BCAA. Kephart
et al. (2016) also demonstrated that BCAA failed to directly
improve performance via fatigue reduction. The investigators found
that strength decrements under fatigued conditions were similar
among participants ingesting a BCAA–carbohydrate supplement
relative to those ingesting carbohydrate alone. Moreover, Estoche
et al. (2019) found that BCAA did not improve countermovement
jump and repetition performance at different time points after a bout
of RT. Therefore, the current state of the literature, although
equivocal, largely does not support the ability of BCAA supple-
mentation to attenuate acute decrements in strength, particularly
relative to tasks with higher ecological validity.

In older individuals, the BCAA and leucine data on strength
and physical function are limited by inadequate total daily protein
intake and/or dietary control. The aforementioned meta-analysis
by Komar et al. (2015) found body composition benefits to various
protein products containing 2 g of leucine but did not show a
positive effect for enhancing muscle strength. The one study
meeting inclusion criteria that matched participants for protein
intake ∼0.99 g/kg (Verhoeven et al., 2009) showed no benefit to
augmenting muscle strength with 7.5 g of leucine supplementation
per day. Importantly, this study and most of the others did not have
an RT arm, which would be important in actualizing strength. A
study by Rondanelli et al. (2011) provided older adult participants
with 8 g of EAA (2.5 g leucine) daily and found improvements
in muscle function, activities of daily living, and grip strength
compared with the placebo group. In this study, participants were
habitually eating at or below the recommended dietary allowance
for protein intake (0.8 g/kg) and received EAA not BCAA. It
should be noted that the recommended dietary allowance was
derived from nitrogen balance studies on relatively sedentary
subjects (National Research Council (US) Subcommittee, 1989)
and fails to account for greater protein requirements for LBM
preservation during hypoenergetic conditions (Carbone et al.,
2019) as well as for maximizing LBM gain, which the collective
evidence indicates is at least double the recommended dietary
allowance (Morton et al., 2017). Similarly, Kim et al. (2012) ob-
served larger increases in leg extension strength in sarcopenic
women who supplemented with EAA. However, diet composition
of participants was not prescribed or reported. Recently, Bagheri
et al. (2020) found no benefit to strength with BCAA supple-

6 Plotkin et al.

(Ahead of Print)



mentation in postmenopausal women. On aggregate, the data are
equivocal on whether there is a strength-related benefit from the
use of additional leucine or BCAA in older individuals that fail
to meet sufficient protein intakes, although it would seem that
EAA provision would be at least as beneficial and likely more so.
More evidence is needed in this population to appropriately
ascertain adequate protein needs and what, if any, role additional
leucine/EAA/BCAA could play.

Practical Implications

Given the current evidence, the majority of the literature fails to
support BCAA supplements as ergogenic aids in the context of
strength and hypertrophy. Importantly, longitudinal studies largely
fail to support the efficacy of BCAA supplementation provided
sufficient daily protein is ingested. However, given preliminary
evidence, more research is needed on the topic in older individuals.
Leucine, in particular, may be efficacious in helping older indivi-
duals reach leucine threshold levels. The greater need for leucine
and lower propensity for adequate calorie intake (Giezenaar et al.,
2016) in this population raises the possibility that supplementing
with leucine may be warranted in cases where it is not possible to
consume sufficient high-quality daily protein, particularly in cases
where higher per meal protein needs cannot be met. Provided that
total protein intake requirements are met, there are no apparent
benefits from consuming additional BCAA as building muscle
requires a full complement of EAA. Therefore, individuals seeking
to optimize strength-related performance and body composition
should focus on ensuring that they consume adequate daily protein
(≥1.6 g·kg−1·day−1) replete in all nine EAA (Morton et al., 2017).
Consuming high-protein meals that contain all EAA will maxi-
mally stimulate MPS. Thus, the ingestion of additional BCAA
through supplementation would be superfluous for anabolism.
Individuals should also be aware that BCAA yield an average
of 4.65 kcal/g (May & Hill, 1990); thus, adding them to every
serving of drinking water comes with additional calories, albeit
arguably negligible. Perhaps more importantly, there is a clear and
seemingly unnecessary monetary cost of the supplement.

In conclusion, the proposed benefits of BCAA used in the
marketing of supplements appear to be at odds with the overall state
of the current literature, which does not support the efficacy of
supplementation onmuscle strength and hypertrophy. Further research
is warranted in older individuals to determine whether BCAA sup-
plementation may confer specific benefits in this population.
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